Non-certainty Equivalent Adaptive Exciting Control of Multi-machine Power Systems
نویسندگان
چکیده
Transient stability problem for multi-machine infinite bus system with the generator excitation was addressed via the non-certainty equivalent nonlinear re-parameterization method. The system need not to be linearized. The damping coefficient uncertainty was considered. A non-certainty equivalent excitation controller and a novel parameter updating law were obtained simultaneously via adaptive backstepping and Lyapunov methods to achieve stability of the error systems. Simulation results showed that the proposed controller had good transient performance.
منابع مشابه
Application to Adaptive Control to Synchronous Machine Excitation
Self-tuning adaptive control technique has the advantage of being able to track the system operating conditions so that satisfactory control action can always be produced. Self-tuning algorithms can be implemented easily. Because the power systems are usually time varying non-linear systems and their parameters vary, adaptive controllers are very suitable for power systems. Characteristics of a...
متن کاملAdaptive Fuzzy Synergetic PSS Design to Damp Power System Oscillations
This paper presents a novel indirect adaptive Power System Stabilizer (PSS) via a developed synergetic control methodology and fuzzy systems. Fuzzy system is utilized in an adaptive scheme to estimate the system using a nonlinear model. The synergetic control guarantees robustness of the controller and makes the controller easy to implement because of using a chatter free continuous control law...
متن کاملAdaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay
In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...
متن کاملStudies with a Generalized Neuron Based PSS on a Multi-Machine Power System
An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کامل